Demography India

A Journal of Indian Association of Study of Population Journal Homepage: https://demographyindia.iasp.ac.in/

Projected Number of Births and Population for the Indian States and Union Territories during 2025-2050 Under Improved Fertility

Arni S.R. Srinivasa Rao^{1,*}

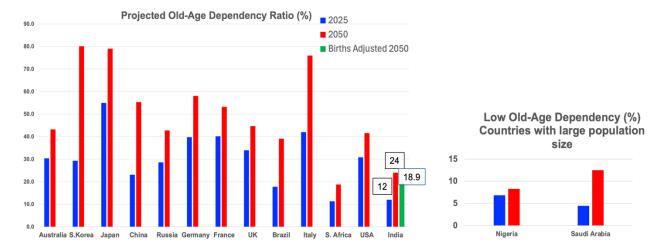
Abstract

Although India became the most populous nation in 2023, there may be a significant shortage of its middle-aged working population to support economic growth between 2025 and 2050. This is a result of declining fertility over the past three decades. If proper measures are not taken now, India will experience a substantial increase in the oldage dependency ratio by 2050, comparable to many wealthier nations which invite migrants to sustain their economic growth. In this article, the annual number of births in Indian states and union territories is projected for the period 2025-2050 under the assumption of improved fertility rates. These projected numbers will assist states and UTs in planning for improved fertility rates. If these revised population projections come to fruition, the economic growth rates envisioned during the Amrit Kaal in India could be achievable.

Keywords

Models, Old-age dependency, Population growth, Working class population

^{*} Corresponding author


¹ Professor and Director, Laboratory for Theory and Mathematical Modeling,

Department of Medicine - Division of Infectious Diseases, Medical College of Georgia, Augusta U.S.A. and Department of Mathematics, Augusta University, Augusta, U.S.A. Email-Id: arrao@augusta.edu

The Context

In 2023, India emerged as the most populous country in the world. However, the country has experienced a steady decline in population growth since the 1990s. Almost all the states and union territories (UTs) in India are experiencing with a shortage of youth and labor force due to the decreasing number of children born in recent decades. This situation is particularly significant as the government anticipates an economic boom during *Amrit Kaal*, coinciding with the centenary celebration of India's independence in 2047, after nearly

250 years of British rule and occupation (Sinha, 2023; TOI, 2023). During these 250 years, India's wealth amounting to trillions of dollars of worth goods and items were looted. A similar situation is prevailing in several countries around the world that were under one or more forms of colonial rule. Indian agriculture is the main economic backbone of India, and the Indian population is the main strength of Indian agricultural products. India has a vast fertile land and enjoys a tropical climate.

Figure 1 Selected countries' old-age dependency ratios (i.e. the population who are 65+ per 100 working age population who are in the age 20-64)

Technologies like AI and robotics could be available worldwide in agriculture in the next decades. For low-population countries, AI becomes essential due to the very shortage of working-class population but for the Indian social fabric, the population plays an important role in many ways which is beyond the scope to discuss. In this article, our focus is to provide annual projections of number of births for Indian states and UTs.

The term *Amrit Kaal*, coined by Hon'ble Prime Minister Modi's government at the center, aptly reflects the demographic dividend that India enjoys compared to several wealthier nations. Despite being the most populous country, India's economic growth relies heavily on maintaining a sufficient labor force, comprising working-class youth and an active middle-aged population. India's population is projected to reach 1.7 billion by 2050 with a

large, aged population who are 65+ (United Nation, 2024). However, the ratio of 65+ population and 20-64 in during 2025-2050 can be reduced sufficiently with policies that can influence couples to opt for more children. Refer to Figure 1 for India and some other relevant countries' old-age dependency ratio. The data for 2025 and 2050 are obtained from UN population (United Nation, 2024) to compute the old-age dependency ratios.

From agriculture to technology and from the service sector to healthcare, a strong presence of young and middle-aged individuals is essential for economic participation. Many affluent countries are having lower younger and middle-aged populations, and these countries are actively inviting large numbers of young migrants to work in their nations due to shortages in these age groups, which are crucial for sustaining their economic growth. As long as India's rich and diverse agricultural land is preserved, it can provide sufficient food for the current and future predicted population of the country. Given the severe shortage of younger people in India due to lower fertility levels in the recent four decades, it is necessary for the country to act on the situation before it is too late to catch up with the economic driving force which is mostly the young and the middle-aged. Economic competitors of India may not like Indian working-class population to grow, and there are several articles that express concerns of growth of India's population (for example, refer to (Fent et al., 2024).

In light of this context, this article presents model-based projections of the annual number of newborns in Indian states and union territories from 2025 to 2050. These estimates reflect current levels and the required

increases in birth rates necessary to maintain the demographic dividend.

Before moving into technicalities and the results, it is important to mention here that all the states and UTs in India needs to sustain the population growth for their collective prosperity. The quality of government schools and the government run hospitals equipped with facilities play a major role in encouraging the couple to go for more kids.

Data and Methods

India experienced a steady decline in the fertility levels since the 1990s (Bhat, 1995; Arokiasamy, 2009; Mohanty et. al., 2016). India's fertility decline was influenced partially due to voluntary control by couples due to family planning program initiative in the country and partially due to natural demographic transition. The wealthily, middle class and poor have all responded to the population control initiatives. However, by the time India has become the most populous country in 2023, India already started facing the consequences of population aging. The aging related population issues arise due to increase in population aged 65+ and decline in fertility and mortality levels in the country (Bhagat and Unisa, 2006; Chaurasia, 2010; Saikia et, al., 2013; Goli et, al., 2019; Yadav, 2021; Rani, et, al., 2023; Mohanty, et, al., 2023).

The relationship between the births over a time can be expressed as a renewal equation described in the Appendix I. The renewal equation derived by Lotka, is also referred as Euler-Lotka population equation. In this article, we estimate the number of births using data on population projections for women aged 15 to 49. We have further computed the

female survivors of the annual births that would join women aged 15-49 from the year 2039 using the matrix described in the Appendix I. The survival probabilities for India, states and union territories were extracted from the 2016-2020 life tables published by the registrar general of India (SRS, 2022). Population proportions for each state and union territory were obtained from the 2011 census data and related reports (RGI, 2011). Additionally, the old-age dependency ratios for India were derived from UN data (United Nation, 2024), calculated using the standard definition of the ratio of the population aged 65 and older to the population aged 15 to 64.

Results

Table 1 presents the projected annual number of births in India based on the current fertility rate (at an average of 1.5 births per woman during her reproductive age) and three potential increases in the average number of births per woman: 2, 2.5, and 3. If the government and citizens begin to reconsider these revised averages, it is estimated that there could be an additional 16 to 48 crore births in the country during the period from 2025 to 2050.

Aging and old-age dependency ratios in India present a universal issue across all states and UTs. Each state could potentially see an increase in annual births if they reconsider their population policies to overcome future economic burdens. Refer to Table 2, Table 3, and Table 4 for revised estimates of annual births by states and UTs, based on three different potential average birth rates mentioned above. If the current low birth rate

exists over next 20-25 years, then several states except for a very few may face a significant decline labor and working-class in populations, thereby adversely impacting their economies. The populous states such as Utter Pradesh (UP) already seeing a decline in younger population (Verma, et, al., 2019). In UP, although the projected annual births start at 56 lakhs, the state will reach a shortage of labor force if the state do not revise its population policies to sustain a growth that can sustain their economic growth plans during 2025-2050. The other populous states like Bihar, Maharashtra, and West Bengal could also face severe labor force shortage by 2040. With increased quality of health surveys and quality of data care in India (Dwivedi, et, al., 2024; Singh, et, al., 2023), there is a possibility of future more accurate fertility estimates based on demographic health surveys in India.

States such as Andhra Pradesh, Assam, Jammu & Kashmir, Jharkhand, Odisha, Punjab, Kerala, and Telangana have an annual birth rate ranging between 5 lakhs and 10 lakhs. States such as Chhattisgarh, Haryana, and Uttarakhand fall within the lower range of annual births between 1 lakh and 5 lakhs. All these states could face shortage of working population and slower in economic growth curves if the fertility rates are not revised.

Among the less populous states, all the northeastern states except for Assam project annual births below 60,000. In Assam, however, the annual births are projected to range between 6 lakhs and 11 lakhs. Two north eastern states such as Meghalaya and Manipur could increase their annual births beyond 50,000 during 2025-2025. With the exception of

Delhi, all other Union Territories (UTs) are expected to show lower numbers of projected annual births. In Delhi, the projected births range from 3 lakhs to 6 lakhs during 2025-2050.

Conclusions

For India and its states, UTs, the annual number of births under the potential improved fertility rates are provided in the article. If the number of births is increased as per the projections provided (Tables 1-4), India can change the projected old-age dependency ratios after 2039. The projections provided in the article are helpful in assisting the state governments and union territories in planning quality health administration and maternity care. Any government has limited influence over women who have already completed their childbearing and undergone one or more permanent sterilizations. However, governments can take constructive steps to encourage couples who can afford to have more children. For families not facing the burden of private education and high healthcare costs, the expenses of childbirth may not be a major concern; they may simply be able to afford additional children if they are willing to.

As mentioned in the introduction, providing primary health care, maternity care, and increasing the quality of education in government-run schools would certainly motivate couples to go for higher kids. The costs incurred on private education might be currently deterring middle-income couples from opting for more than two kids on average.

The current Hon'ble Chief Minister of the state of Andhra Pradesh Chandrababu Naidu, emphasized in public meetings during 20152016 the importance of increasing birth rates in the state to address the aging population issue and labor shortage in the state. His focus at that time was not politically motivated. Now, a decade later, he recognizes the continuing significance of increasing births in Andhra Pradesh. That vision now holds for almost all the states and UTs in the country who already have lowest population growths.

- India can mitigate the effects of a rapidly aging population and reduce the associated burden during 2040 -2050 by increasing the average number of births per woman from 2025. This can be achieved by implementing health and education policies that are affordable for all families.
- The states like Bihar, Maharashtra, Uttar Pradesh, and West Bengal who have relatively high number of births in the country do not necessarily need to control their population growth to produce enough working-class population during 2025-2050.
- Improving the quality of government hospitals and the education system from elementary school through high school—can significantly reduce financial stress on families. By enhancing these services, the costs associated with childbearing and child-rearing can be lowered.
- Any incentives that the central government, state governments, and UTs can devise to encourage births among couples could have a substantial impact in increasing the overall young and middle-aged Indian population.

 Those who are financially stable and capable could consider having more children. This prevents labor shortages (both skilled and unskilled) that several states are currently facing, and to avoid aging problems, higher dependency ratios that low-fertility states are currently facing.

References

- Arokiasamy, P. (2009). Fertility decline in India: Contributions by uneducated women using contraception. Economic and Political Weekly, 55-64.
- Bhagat, R. B., & Unisa, S. (2006). Ageing and dependency in India: A new measurement. Asian Population Studies, 2(2), 201-214.
- Bhat, P.N. Mari. (1995). Contours of fertility decline in India: A district-level study based on the 1991 census. In K. Srinivasan (Ed.), Population Policy and Reproductive Health. Hindustan Publishing Corporation, pp: 1-74.
- Chaurasia, R. A. (2010) Mortality transition in India 1970–2005. Asian Population Studies, 6(1), 47-68.
- Dwivedi, L. K., Arora, P., Banerjee, K. (2024). Data-Quality Indicators from the National Family Health Survey A Few Observations. India Population Report, 270.
- Fent, T., Wrzaczek, S., Feichtinger, G., & Novak, A. (2024). Fertility decline and age-structure in China and India. Working Papers, Vianna Institute of Demography, Austria, 2024, pp: 1-24
- Goli, S., Reddy, A. B., James, K. S., Srinivasan, V. (2019). Economic independence and social security among India's elderly. Economic and Political Weekly, 54(39), 32-41.
- Mohanty, S. K., Fink, G., Chauhan, R. K., Canning, D. (2016). Distal determinants of fertility decline: Evidence from 640 Indian districts. Demographic Research, 34, 373-406.
- Mohanty, S. K., Sahoo, U., Rashmi, R. (2022). Oldage dependency and catastrophic health

- expenditure: evidence from Longitudinal Ageing Study in India. The International Journal of Health Planning and Management, 37(6), 3148-3171.
- Rani, V., Goli, S., Reddy, A. B. (2023). The economic-adjusted age dependency ratio in India: a new measure for understanding economic burden of aging. In Handbook of Aging, Health and Public Policy: Perspectives from Asia. Singapore: Springer Nature Singapore, pp. 1-37.
- RGI (The Registrar General of India), (2011). Population, Size and Decadal Change, 2011, Census 2011, India, Government of India, New Delhi, pp. 51-76.
- Saikia, N., Singh, A., & Ram, F. (2013). Adult male mortality in India: an application of the widowhood method. Asian Population Studies, 9(3), 244-263.
- Singh, S. K., Lhungdim, H., Shekhar, C., Dwivedi, L. K., Pedgaonkar, S., & James, K. S. (2023). Key drivers of reversal of trend in childhood anaemia in India: evidence from Indian demographic and health surveys, 2016–21. BMC public health, 23(1), 1574.
- Sinha, J. Positioning India for The Future: The Amrit Kaal Budget, https://indiafoundation.in/articles-and-commentaries/positioning-india-for-the-future-the-amrit-kaal-budget/2023 (accessed April 21, 2025).
- Srinivasa Rao, A.S.R. (2025). Mathematical Demography. Sankhya B, pp. 1-98. https://doi.org/10.1007/s13571-025-00373-z
- SRS. (2022). SRS Based Abridged Life Tables 2016-2020, Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India, New Delhi, 2022, pp. 12-54.
- TOI

 https://timesofindia.indiatimes.com/blogs/voices/a-growth-path-for-amrit-kaal/2023 (accessed April 21, 2025).
- United Nations. (2024). The 2024 revision of world population prospects (28th rev.). Department

of Economic and Social Affairs, Population Division.

Verma, P., Singh, K. K., Singh, A., & Srivastava, U. (2019). Population control under various family planning schemes in Uttar Pradesh, India. Genus, 75, 1-12.

Appendix I: Models and Methods

The Euler-Lotka integral equations described below plays a fundamental role in population dynamics. Let

$$\phi(r) = \int_0^\infty e^{ra} l(a) m(a) da,$$
(1)

where r is the intrinsic population growth rate, m(a) is probability of a woman aged a giving birth which is computed usually for a year, and l(a) is the survival probability of an individual reaching age a since birth. The function m(a) is also referred as maternity function. Instead of one growth rate r, let us consider multiple growth rates $r_0, r_1, r_2, ...$, and let

$$\phi(r_j) = \int_0^\infty e^{r_j a} l(a) m(a) da$$

for j=0,1,2,.... When $\phi(r)=1$ or $\phi(r_j)=1$ for j=0,1,2,..., we call it as the characteristic equation of the Euler-Lotka population equation. The function $\phi(r_j)$ is strictly decreasing because

$$\frac{\mathrm{d}\phi(r_j)}{\mathrm{d}r_j} = \int_0^\infty ae^{r_j a} l(a) m(a) da < 0 \tag{3}$$

and

$$\frac{\mathrm{d}\phi(r_j)}{\mathrm{d}r_j^2} = \int_0^\infty a^2 e^{r_j a} l(a) m(a) da > 0$$

For $a \ge 0$, and l(a)m(a) > 0. The function $\phi(r_j)$ intersects the line $\phi(r_j) = 1$ exactly once. For example, refer to (Srinivasa, 2025), for further details on Euler-Lotka type of

Yadav, S. (2021). Progress of inequality in age at death in India: role of adult mortality. European Journal of Population, 37,3: 523-550.

functions. Multiplying both sides of $\phi(r_j) = 1$ by $\sum_{j=0}^{\infty} Q_j e^{r_j t}$, we get

$$\sum_{j=0}^{\infty} Q_j e^{r_j t} = \int_0^{\infty} \sum_{j=0}^{\infty} Q_j e^{r_j (t-a)} l(a) m(a) da.$$
 (5)

The equation (5) is written as

$$B(t) = \int_{0}^{\infty} B(t-a)l(a)m(a)da,$$
(6)

where $B(t) = \sum_{j=0}^{\infty} Q_j e^{r_j t}$ and B(t) represents the number of female births in the year t. The equation (6) is known as *renewal equation* of the population. The solution of $\phi(r_j) = 1$ will have one real root, say, r_0 , and r_j complex roots for j = 1,2,3,... Therefore, B(t) can be expressed as

$$B(t) = Q_0 e^{r_0 t} \sum_{j=1}^{\infty} Q_j e^{r_j t}.$$

When r = 0 in (1), we have $\phi(0) = 1$. The quantity $\phi(0)$ is known as net reproduction rate of a population and in demography we denote $\phi(0)$ by R_0 . The quantity R_0 is obtained using the formula

$$R_0 = \int_0^\infty l(a)m(a)da = \int_\alpha^\beta l(a)m(a)da,$$
(7)

where α and β are the lower and upper age of the reproduction of women. The value of R_0 can be approximated by $R_0 \approx \frac{1}{2} \times 10^{-2}$ Total fertility Rate (TFR), where

TFR =
$$\int_{\alpha=15}^{\beta=45} \frac{B(a)}{W(a)} da .$$
 (8)

(2)

(4)

The quantity TFR represents the total number of female births per woman during her reproductive period. Suppose $\alpha = 15$ and $\beta = 45$, then

$$\int_{\alpha=15}^{\beta=45} \frac{B(a)}{W(a)} da \approx (45-15) \times \frac{\int_{\alpha=15}^{\beta=45} B(a) da}{\int_{\alpha=15}^{\beta=45} W(a) da},$$

when $\alpha = 15$ and $\beta = 49$, then

$$\int_{\alpha=15}^{\beta=45} \frac{B(a)}{W(a)} da \approx (49-15) \times \frac{\int_{\alpha=15}^{\beta=49} B(a) da}{\int_{\alpha=15}^{\beta=49} W(a) da},$$
(10)

The quantity

$$\frac{\int_{\alpha}^{\beta} B(a)da}{\int_{\alpha}^{\beta} W(a)da}$$

represents the average number of female births per woman per year. The number of

births in the year *t* born to women in the age group [15,45] is computed using

$$\int_{\alpha=15}^{\beta=45} B(a)da = \frac{1}{30} \int_{\alpha=15}^{\beta=45} \frac{B(a)}{W(a)} da \int_{\alpha=15}^{\beta=45} W(a) da,$$
(11)

and the number of births in the year t born to women in the age group [15,49] is computed using

$$\int_{\alpha=15}^{\beta=49} B(a)da = \frac{1}{34} \int_{\alpha=15}^{\beta=49} \frac{B(a)}{W(a)} da \int_{\alpha=15}^{\beta=49} W(a) da.$$

(12)

Let $t_0, t_1, ..., t_k, t_{k+1}, ...$, be the set of years for which we are projecting the annual number of births, and let t_k be the year from which the birth cohort born in t_0 will enter the reproductive age of women. The reproductive women aged 15-49 from the year t_k will be adjusted based on previously projected birth cohorts using the matrix A, where

$$A = \begin{bmatrix} B^{(t_{k}-15)} p^{(15)} + \int_{\alpha=15}^{\beta=49} W(a, t_{k}) da & = \int_{\alpha=15}^{\beta=49} W^{*}(a, t_{k}) da \\ B^{(t_{k}-15)} p^{(16)} + B^{(t_{k+1}-14)} p^{(15)} + \int_{\alpha=15}^{\beta=49} W(a, t_{k+1}) da & = \int_{\alpha=15}^{\beta=49} W^{*}(a, t_{k+1}) da \\ B^{(t_{k}-15)} p^{(17)} + B^{(t_{k}-14)} p^{(16)} + B^{(t_{k}-13)} p^{(15)} + \int_{\alpha=15}^{\beta=49} W(a, t_{k+2}) da & = \int_{\alpha=15}^{\beta=49} W^{*}(a, t_{k+2}) da \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$(13)$$

(9)

In (13), $B^{(t_i-n)}$ is the female number of births in the year (t_i-n) for i=k,k+1,... for a positive integer n, $p^{(i)}$ is the probability of survival for i years since the birth year, $\int_{\alpha=15}^{\beta=49} W(a,t_k) da$ is the projected women aged

15-49 in the year t_k , and $\int_{\alpha=15}^{\beta=49} W^*(a, t_k) da$ is the adjusted women aged 15-49 in the year t_k .

The probability of dying for a birth cohort P is obtained from the Sample Registration System life tables (SRS, 2022), where P=

$$\left\{ \begin{array}{l} 0.03515, \ 0.00467, \ 0.00467, \ 0.00467, \ 0.00467, \ 0.00467, \ 0.00467, \ 0.00467, \ 0.0026, \ 0.0026, \ 0.0026, \ 0.0026, \ 0.0026, \ 0.0026, \ 0.00389, \ 0.00389, \ 0.00389, \ 0.00389, \ 0.00559, \ 0.00559, \ 0.00668 \end{array} \right.$$

Table 1 Projected number of total births in India during 2025-2050 (in crores)

Average Births Per	Projected number of total births in India from 2025 to 2050 (in Crores)																									
Woman within 15- 49 age	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
2 (Current TFR)	2.27	2.29	2.30	2.32	2.33	2.34	2.35	2.36	2.37	2.37	2.37	2.37	2.37	2.37	2.42	2.47	2.53	2.58	2.63	2.68	2.73	2.79	2.83	2.88	2.93	2.98
2.5 (Projected)	2.84	2.86	2.88	2.90	2.92	2.93	2.94	2.95	2.96	2.96	2.96	2.96	2.96	2.96	3.03	3.09	3.16	3.22	3.29	3.35	3.42	3.48	3.54	3.60	3.66	3.72
3.0 (Projected)	3.40	3.43	3.46	3.48	3.50	3.51	3.53	3.54	3.55	3.54	3.56	3.56	3.55	3.55	3.63	3.71	3.79	3.87	3.95	4.03	4.10	4.18	4.25	4.32	4.40	4.46
1.5 (Declined)	1.70	1.71	1.73	1.74	1.75	1.76	1.76	1.77	1.77	1.78	1.78	1.78	1.78	1.77	1.82	1.86	1.90	1.93	1.97	2.01	2.05	2.09	9 2.13	3 2.16	2.20	2.23

Note: During the years 2033 to 2038, the projected births differ by thousands so after rounding to two decimal places, they all result in the same value in crores. For example, for TFR=2, for the year 2033, the births are 23,659 thousand, and for the year 2038 the births are 23,661 thousand, and rounding them to two decimal places, both are placed at 2.37 crores. The same reason applied for other projected births that are similar.

Table 2 Projected births (in lakhs) in Indian States and Union Territories during 2025-2050 (with 2 births per woman)

Average Births							Р	roject	ed anı	nual n	umbe	r of bi	rths i	n Stat	es an	d UTs	during	2025	-2050	(in lak	hs)						
Per Woman in																											
age 15-49 = 2.0	2025	2026	2027	202	8 2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	204/ 2	048 2	2049	2050	
Andhra Pradesh	9.30	9.37	9.44	9.5	1 9.56	9.6	1 9.65	9.68	9.70	9.72	9.72	9.72	9.71	9.70	9.92	10.14	10.36	10.58	10.79	11.00	11.21	11.42	11.62 1	1.82	12.01	12.2	
Arunachal Pradesh	0.25	0.25	0.25	0.2	6 0.26	0.2	6 0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.28	0.28	0.29	0.30	0.30	0.31	0.31	0.32	0.32	0.33	
Assam	5.85	5.90	5.94	5.9	6.02	6.0	5 6.07	6.09	6.10	6.11	6.12	6.12	6.11	6.10	6.24	6.38	6.52	6.66	6.79	6.92	7.06	7.19	7.31	7.44	7.56	7.68	
Bihar	24.49	24.69	9 24.8	8 25.0	05. 25.1	19 25.3	31 25.4	1 25.49	25.5	5 25.6	0 25.6	1 25.60	25.58	3 25.55	26.14	26.72	27.29	27.86	28.43	28.98	29.54	1 30.08	30.61	31.13	31.65	32.14	
Chhattisgarh	4.79	4.82	4.86	4.89	4.92	2 4.94	4.96	4.98	4.99	5.00	5.00	5.00	5.00	4.99	5.11	5.22	5.33	5.44	5.55	5.66	5.77	5.88	5.98	6.08	6.18	6.28	
Goa	0.27	0.27	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.29	0.30	0.30	0.31	0.32	0.32	0.33	0.33	0.34	0.35	0.35	0.36	
Gujarat	11.32	11.41	11.50	11.57	7 11.64	11.69	11.74	11.78	11.81	11.83	11.83	11.83	11.82	11.81	12.08	12.34	12.61	12.87	13.13	13.39	13.65	13.90	14.14	14.39	14.62	14.85	
Haryana	4.74	4.78	4.81	4.85	4.87	4.90	4.92	4.93	4.94	4.95	4.96	4.95	4.95	4.95	5.06	5.17	5.28	5.39	5.50	5.61	5.72	5.82	5.92	6.03	6.12	6.22	
Himachal Pradesh	1.29.	1.30.	1.31	1.32	1.33	1.34	1.34	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.38	1.41	1.44	1.47	1.50	1.53	1.56	1.59	1.62	1.64	1.67	1.70	
J&K	2.29	2.31	2.33	2.34	2.36	2.37	2.38	2.38	2.39	2.39	2.40	2.39	2.39	2.39	2.44	2.50	2.55	2.61	2.66	2.71	2.76	2.81	2.86	2.91	2.9	6 3.01	
Jharkhand	6.19 6	.24	6.29	6.33	6.37	6.40	6.42	6.44	6.46	6.47	6.47	6.47	6.47	6.46	6.61	6.75	6.90	7.04	7.19	7.33	7.47	7.60	7.74	7.8	7 8.0	0 8.12	
Karnataka	11.45	11.55	11.63	11.7	11.78	11.83	11.88	11.92	11.95	11.97	11.98	11.97	11.96	6 11.9	5 12.2	22 12.4	19 12.76	3 13.03	3 13.29	13.55	13.81	14.06	14.31	14.56	14.8	15.03	
Kerala	6.26	6.31 (6.36	6.40	6.44	6.47	6.49	6.51	6.53	6.54	6.54	6.54	6.54	6.53	6.68	6.83	6.97	7.12	7.26	7.41	7.55	7.69	7.82	7.96	8.0	9. 8.21	
Madhya Pradesh	13.61	13.72	13.8	2 13.9	2 14.00	14.0	3 14.12	2 14.16	14.20	14.22	14.23	14.22	14.2	1 14.2	0 14.5	2 14.8	34 15.1	6 15.48	15.79	16.10	16.41	16.71	17.01	17.30	0 17.	58 17.86	
Maharashtra	21.05	21.2	2 21.3	8 21.	52 21.6	5 21.7	4 21.8	3 21.9	0 21.9	6 21.9	9 22.0	1 22.00	21.9	8 21.9	6 22.4	46 22.9	96 23.4	5 23.94	4 24.42	24.91	25.38	25.85	26.30	26.75	27.1	9 27.62	
Manipur	0.48	0.48	0.48	0.49	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.60	0.61	0.62	0.62	
Meghalaya	0.57	0.57	0.58	0.58	0.58	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.61	0.62	0.63	0.64	0.66	0.67	0.68	0.70	0.71	0.72	0.73	0.74	
Mizoram	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.22	0.22	0.23	0.23	0.24	0.24	0.25	0.25	0.26	0.26	0.26	0.27	
Nagaland	0.36	0.37	0.37	0.37	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39	0.40	0.40	0.41	0.42	0.43	0.44	0.45	0.45	0.46	0.47	0.48	
Odisha	7.87	7.93	7.99	8.05	8.09	8.13	8.16	8.19	8.21	8.22	8.23	8.23	8.22	8.21	8.40	8.58	8.77	8.95	9.13	9.31	9.49	9.66	9.84	10.00	10.17	10.33	
Punjab	5.19	5.24	5.28	5.31	5.34	5.37	5.39	5.40	5.42	5.43	5.43	5.43	5.42	5.42	5.54	5.66	5.79	5.91	6.03	6.15	6.26	6.38	6.49	6.60	6.7	1 6.81	
Rajasthan	12.84	12.94	13.0	4 13.1	3 13.20	13.20	3 13.32	13.36	13.39	13.41	13.42	13.42	13.41	1 13.39	13.70	14.00	14.30	14.60	14.90	15.19	15.48	15.76	16.04	16.3	2 16.	58 16.84	ı
Sikkim	0.11	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.1	5 0.15	
Tamil Nadu	13.52	13.63	13.7	3 13.8	2 13.90	13.9	3 14.02	14.07	14.10	14.12	14.13	14.13	14.12	2 14.10	14.42	14.74	15.06	15.37	15.69	16.00	16.30	16.60	16.89	17.18	17.	46 17.74	1
Telangana	6.55	6.61	6.66	6.70	6.74	5.77	6.80	6.82	6.84	6.85	6.85	6.85	6.85	6.84	6.99	7.15	7.30	7.46	7.61	7.76	7.90	8.05	8.19	8.33	8.4	7 8.60	
Tripura	0.68	0.69	0.69	0.70	0.70	0.70.	0.71	0.71	0.71	0.71	0.71	0.71	0.7	1 0.7	0.73	0.74	0.76	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.8	8 0.89	•
Uttar Pradesh	37.44	37.75	38.0	3 38.2	9 38.51	38.6	38.84	38.97	39.06	39.13	39.15	39.14	39.1	1 39.0	7 39.9	96 40.8	4 41.72	42.5	9 43.45	44.31	45.15	45.98	46.80	47.60	0 48.	38 49.1	3
Uttarakhand	1.88	1.90	1.91	1.93	1.94	1.94	1.95	1.96	1.96	1.97	1.97	1.97	1.97	1.96	2.0	1 2.05	2.10	2.14	2.18	2.23	2.27	2.31	2.35	2.39	2.4	3 2.47	7
West Bengal	17.10	17.24	17.3	7 17.4	9 17.59	17.6	7 17.74	17.80	17.84	17.87	17.88	17.87	17.86	17.8	4 18.	25 18.6	55 19.0	5 19.45	19.85	20.24	20.62	21.00	21.37	21.74	4 22.	09 22.44	1
A & N Islands	0.07	0.07	0.07	0.07	0.07 (0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	7 0.07	7 0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.0	9 0.09	
Chandigarh	0.20	0.21 (0.21	0.21	0.21 (0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.22	0.22	0.23	0.23	0.24	0.24	0.25	0.25	0.26	0.26	0.2	6 0.27	
D & N Haveli, D& D	0.11	0.11	0.12	0.12	0.12 (0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2 0.1	2 0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.1	5 0.15	
Delhi	3.15	3.18	3.20	3.22	3.24	3.26	3.27	3.28	3.29	3.29	3.30	3.30	3.29	3.29	3.36	3.4	4 3.51	3.59	3.66	3.73	3.80	3.87	3.94	4.01	4.0	7 4.14	.
Ladakh	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05.	0.05	0.05	0.05	0.0	5 0.0	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.0	6 0.06	,
Lakshadweep	0.01	0.01	0.01	0.01 (0.01 0	.01 0	.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0	1 0.0	1 0.0	1 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0	1 0.01	ı
Puducherry	0.23	0.23 (0.23	0.23 (0.23 0	.23 0	.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.2	4 0.2	25 0.25	0.26	0.26	0.27	0.27	0.28	0.28	0.29	0.2	9 0.30)

Note: J & K: Jammu and Kashmir, A & N Islands: Andaman and Nicobar Islands, D & N Haveli, D & D: Dadra and Nagar Haveli, and Daman and Diu.

Table 3 Projected births (in lakhs) in Indian States and Union Territories during 2025-2050 (with 2.5 births per woman)

Average Births Per Woman in							Pr	ojecte	d ann	ual nu	mber	of birth	s in St	tates a	and U	Ts du	ing 20	25-205	50 (in	lakhs)						
age 15-49 = 2.5	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042 2	043 2	2044	2045	2046	2047	2048	2049	2050
Andhra Pradesh												12.15						13.22			14.02 1				15.02	
Arunachal Pradesh	0.31	0.31	0.32				0.32		0.33	0.33			0.33	0.33	0.33	0.34	0.35	0.35	0.36	0.37	0.38	0.38	0.39	0.40	0.40	0.41
Assam	7.31	7.37	7.43								7.65	7.65	7.64	7.63	7.80	7.98	8.15	8.32				8.98		9.30		9.60
Bihar	30.62	30.87	7 31.10	0 31.3	1 31.4	9 31.6	31.7	76 31.8	6 31.9	4 31.9	9 32.0	1 32.00	31.98	31.9	4 32.6	33.3	9 34.1	1 34.83	35.53	36.23	36.92	37.60	38.27	38.92	39.56	40.18
Chhattisgarh	5.98	6.03	6.08	6.12	2 6.15	6.18	6.20	6.22	6.24	6.25	6.25	6.25	6.25	6.24	6.38	6.52	2 6.66	6.80	6.94	7.08	7.21	7.35	7.48	7.60	7.73	7.85
Goa	0.34	0.34	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.36	0.36	0.36	0.36	0.35	0.36	0.37	0.38	0.39	0.39	0.40	0.41	0.42	0.43	0.43	0.44	0.45
Gujarat	14.15	14.20	6 14.3°	7 14.4	7 14.5	5 14.6	2 14.6	7 14.7	2 14.7	6 14.7	8 14.79	14.79	14.77	7 14.7	'6 15.	.1 15.4	43 15.7	76 16.09	9 16.42	2 16.74	17.06	17.37	17.68	17.98	18.28	18.56
Haryana	5.93	5.97	6.02	6.06	6.09	6.12	6.15	6.17	6.18	6.19	6.20	6.19	6.19	6.18	6.32	2 6.4	6 6.6	0 6.74	6.88	7.01	7.14	7.28	7.41	7.53	7.66	7.77
Himachal Pradesh	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.68	1.69	1.69	1.69	1.69	. 1.69	1.69	9. 1.72	2 1.76	3 1.80	1.84	1.88	1.91	1.95	1.98	2.02.	2.05	2.09	2.12
J&K	2.86	2.89	2.91	2.93	2.94	2.96	2.97	2.98	2.99	2.99	2.99	2.99	2.99	2.99	3.06	3.12	2 3.19	3.26	3.32	3.39	3.45	3.52	2 3.58	3.6	4 3.7	0 3.76
Jharkhand	7.74	7.80	7.86	7.92	7.96	8.00	8.03	8.05	8.07	8.09	8.09	8.09	8.08	8.07	8.26	8.4	4 8.6	2 8.80	8.98	9.16	9.33	9.5	0 9.6	7 9.84	1 10.0	0 10.16
Karnataka	14.32	14.43	14.54	14.64	14.72	14.79	14.85	14.90	14.93	14.96	14.97	14.96	14.95	14.94	15.28	8 15.6	2 15.9	5 16.28	16.61	16.94	17.20	6 17.	58 17.	89 18.2	20 18.5	0 18.79
Kerala	7.82	7.89	7.95	8.00	8.05	8.08	8.12	8.14	8.16	8.18	8.18	8.18	8.17	8.16	8.35	8.53	8.72	8.90	9.08	9.26	9.44	9.6	1 9.78	9.95	5 10.1°	1 10.27
Madhya Pradesh	17.01	17.15	17.28	17.40	17.49	17.57	17.64	17.70	17.74	17.77	17.79	17.78	17.77	17.75	18.15	5. 18.5	5 18.9	5 19.35	19.74	20.1	3 20.	51 20.	39 21.	26 21.6	62 21.9	8 22.32
Maharashtra	26.31	26.52	26.7	2 26.9	1 27.0	6 27.1	8 27.2	29 27.3	8 27.44	27.49	27.51	27.50	27.48	27.45	28.07	28.69	29.3	1 29.92	30.53	31.13	31.7	2 32.3	1 32.8	88 33.4	4 33.9	9 34.52
Manipur	0.60	0.60	0.60	0.61	0.61	0.62	0.62.	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.64	0.65	0.66	0.68	0.69	0.70	0.72	0.7	3 0.7	4 0.7	6 0.7	7 0.78
Meghalaya	0.71	0.71	0.72	0.72	0.73	0.73	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.76	0.77	0.79	0.81	0.82	0.84	0.8	5 0.8	37 0.8	39 0.9	0 0.92	0.93
Mizoram	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.28	0.28	0.29	0.30	0.30	0.3	1 0.3	1 0.3	32 0.3	32 0.3	3 0.33
Nagaland	0.45	0.46	0.46	0.46	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.48	0.49	0.51	0.52	0.53	0.54	0.5	5 0.5	6 0.	57 0.	58 0.5	9 0.60
Odisha	9.84	9.92	9.99	10.06	10.12	10.16	10.20	10.24	10.26	0.28 1	10.29	10.28	10.27	10.26 1	0.50	10.73	10.96	11.19.	11.42	11.64	11.86	12.0	8 12.	29 12.5	50 12.7	1 12.91
Punjab	6.49	6.54	6.59	6.64	6.68	6.71	6.73	6.76	6.77	6.78	6.79	6.79	6.78	6.77	6.93	7.08	7.23	7.38	7.53	7.68	7.83	7.9	7 8.	11 8.	25 8.3	9 8.52
Rajasthan	16.05	16.18	16.30	16.41	16.50	16.58	16.64	16.70	16.74	16.77	16.78	16.77	16.76	16.74	7.12	17.50	17.88	18.25	18.62	18.99	19.35	19.70	20.0	5 20.4	0 20.7	3 21.06
Sikkim					0.15						0.15		0.15				0.16	0.16	0.16	0.17	0.17	0.17		3 0.18		3 0.19
Tamil Nadu	16.90	17.03	17.16	17.28	17.38	17.46	17.53	17.58	17.63	7.66	17.67	17.66	17.65	17.63	18.03	18.43	18.83	19.22	19.61	19.99	20.37	20.75	21.1	2 21.4	8 21.8	3 22.17
Telangana	8.19	8.26			8.43		8.50		8.55	8.56	8.57	8.56	8.56	8.55			9.13	9.32	9.51	9.70	9.88	10.06				9 10.75
Tripura	0.85	0.86	0.86	0.87	0.87	0.88	0.88	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.91	0.93	0.95	0.97	0.99	1.01	1.03	1.04	1.06	1.08	1.10	1.12
Uttar Pradesh	46.81	47.19	9 47.5	4 47.8	7 48.14	48.36	48.55	48.71	48.83	48.91	48.94	48.92	48.88	48.8	3 49.94	4 51.0	5 52.15	5 53.24	54.32	55.39	56.44	57.48	3 58.5	0 59.4	19 60.4	7 61.42
Uttarakhand	2.35	2.37	2.39	2.41	2.42	2.43	2.44	2.45	2.45	2.46	2.46	2.46	2.46	2.45	2.51	2.57	2.62	2.68	2.73	2.78	2.84	2.89	2.9	4 2.99	9 3.0	4 3.09
West Bengal				1 21.86	3 21.98	22.08	22.17	22.24	22.30	22.34	22.35	22.34	22.33	22.3	0 22.81	1 23.31	23.82	24.31	24.81	25.29	25.78	26.2	5 26.7	1 27.1	17 27.6	2 28.05
A & N Islands	0.09				0.09 0				0.09	0.09		0.09	0.09		0.09		0.09	0.10	0.10	0.10	0.10	0.10	0.1	1 0.11	0.1	0.11
Chandigarh	0.26				0.26 0				0.27		0.27	0.27	0.27	0.27			0.28	0.29	0.30	0.30		0.31		2 0.3		3 0.33
D & N Haveli, D& D		0.14			0.15				0.15	0.15		0.15	0.15	0.15		0.15	0.16	0.16	0.16	0.17		0.17				8 0.19
Delhi	3.94		4.00		4.05 4				4.11	4.12		4.12	4.12	4.11	4.20		4.39	4.48	4.57	4.66						9 5.17
Ladakh	0.06				0.06				0.06		0.06	0.06	0.06	0.06				0.06	0.07							0.07
Lakshadweep	0.01				0.01 0				0.01		0.01	0.01	0.01	0.01	0.02			0.02	0.02							02 0.02
Puducherry	0.28				0.29 0.				0.30		0.30	0.30	0.30	0.30		0.31		0.32	0.33							37 0.37
																							- 516			

Note: J & K: Jammu and Kashmir, A & N Islands: Andaman and Nicobar Islands, D & N Haveli, D & D: Dadra and Nagar Haveli, and Daman and Diu.

Table 4 Projected births (in lakhs) in Indian States and Union Territories during 2025-2050 (with 3 births per woman)

Average Births Per Woman in	Projected annual number of births in States and UTs during 2025-2050 (in lakhs)
age 15-49 = 3.0	2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Andhra Pradesh	13.95 14.06 14.17 14.26 14.34 14.41 14.47 14.52 14.55 14.58 14.58 14.58 14.57 14.55 14.88 15.21 15.54 15.86 16.19 16.51 15.82 17.13 17.43 17.73 18.02 18.30
Arunachal Pradesh	0.37 0.38 0.38 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39
Assam	8.78 8.85 8.92 8.98 9.03 9.07 9.10 9.13 9.16 9.17 9.18 9.17 9.17 9.16 9.37 9.57 9.78 9.98 10.19 10.39 10.58 10.78 10.97 11.16 11.34 11.52
Bihar	36.74 37.04 37.32 37.58 37.79 37.96 38.11 38.24 38.33 38.39 38.42 38.40 38.37 38.33 39.21 40.07 40.94 41.79 42.64 43.48 44.30 45.12 45.92 46.70 47.47 48.21
Chhattisgarh	7.18 7.24 7.29 7.34 7.38 7.42 7.45 7.47 7.49 7.50 7.51 7.50 7.50 7.49 7.66 7.83 8.00 8.16 8.33 8.49 8.66 8.81 8.97 9.12 9.27 9.42
Goa	0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.44 0.45 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54
Gujarat	16.98 17.11 17.24 17.36 17.46 17.54 17.61 17.67 17.71 17.74 17.75 17.74 17.73 17.71 18.11 18.52 18.91 19.31 19.70 20.09 20.47 20.85 21.22 21.58 21.93 22.28
Haryana	7.11 7.17 7.22 7.27 7.31 7.35 7.38 7.40 7.42 7.43 7.43 7.43 7.43 7.42 7.59 7.76 7.92 8.09 8.25 8.41 8.57 8.73 8.89 9.04 9.19 9.33
Himachal Pradesh	1.94 1.95 1.97 1.98 1.99 2.00 2.01 2.02 2.02 2.03 2.03 2.03 2.03 2.02 2.07 2.12 2.16 2.21 2.25 2.29 2.34 2.38 2.42 2.46 2.51 2.54
J&K	2.86 2.89 2.91 2.93 2.94 2.96 2.97 2.98 2.99 2.99 2.99 2.99 2.99 3.06 3.12 3.19 3.26 3.32 3.39 3.45 3.52 3.58 3.64 3.70. 3.76
Jharkhand	9.29 9.36 9.43 9.50 9.55 9.59 9.63 9.66 9.69 9.70 9.71 9.71 9.70 9.69 9.91 10.13 10.35 10.56 10.78 10.99 11.20 11.40 11.61 11.81 12.00 12.19
Karnataka	17.18 17.32 17.45 17.57 17.67 17.75 17.82 17.88 17.92 17.95 17.96 17.96 17.94 17.92 18.33 18.74 19.14 19.54 19.94 20.33 20.72 21.10 21.47 21.84 22.20 22.54
Kerala	9.39 9.47 9.54 9.60 9.60 9.70 9.74 9.77 9.79 9.81 9.82 9.81 9.81 9.80 10.02 10.24 10.46 10.68 10.90 11.11 11.32 11.53 11.73 11.93 12.13 12.32
Madhya Pradesh	20.41 20.58 20.73 20.88 20.99 21.09 21.17 21.24 21.29 21.33 21.34 21.34 21.32 21.30 21.78 22.26 22.74 23.22 23.69 24.15 24.61 25.07 25.51 25.95 26.37 26.78
Maharashtra	31.57 31.83 32.07 32.29 32.47 32.62 32.75 32.85 32.93 32.99 33.01 33.00 32.97 32.94 33.69 34.43 35.17 35.91 36.64 37.36 38.07 38.77 39.46 40.13 40.79 41.43
Manipur	0.71 0.72 0.73 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.78 0.80 0.81 0.83 0.85 0.86 0.88 0.89 0.91 0.92 0.94
Meghalaya	0.85 0.86 0.86 0.87 0.87 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89
Mizoram	0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
Nagaland	0.54 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.58 0.59 0.61 0.62 0.63 0.64 0.66 0.67 0.68 0.69 0.70 0.71
Odisha	11.81 11.90 11.99 12.07 12.14 12.20 12.25 12.28 12.31 12.34 12.34 12.33 12.32 12.60 12.88 13.15 13.43 13.70 13.97 14.23 14.50 14.75 15.01 15.25 15.49
Punjab	7.79 7.85 7.91 7.97 8.01 8.05 8.08 8.11 8.13 8.14 8.15 8.14 8.14 8.13 8.31 8.50 8.68 8.86 9.04 9.22 9.39 9.57 9.74 9.90 10.07 10.22
Rajasthan	19.26 19.41 19.56 19.69 19.80 19.89 19.97 20.04 20.09 20.12 20.13 20.13 20.11 20.09 20.55 21.00 21.45 21.90 22.35 22.79 23.22 23.6524.06 24.48 24.88 25.27
Sikkim	0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Tamil Nadu	20.28 20.44 20.59 20.74 20.85 20.95 21.03 21.10 21.15 21.19 21.20 21.19 21.18 21.15 21.64 22.11 22.59 23.06 23.53 23.99 24.45 24.90 25.34 25.77 26.20 26.61
Telangana	9.83 9.91 9.99 10.05 10.11 10.16 10.20 10.23 10.26 10.27 10.28 10.28 10.27 10.26 10.49 10.72 10.95 11.18 11.41 11.63 11.86 12.07 12.29 12.50 12.70 12.90
Tripura	1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06 1.07 1.07 1.07 1.07 1.06 1.09 1.11 1.14 1.16 1.18 1.21 1.23 1.25 1.28 1.30 1.32 1.34
Uttar Pradesh	56.17 56.62 57.05 57.44 57.76 58.03 58.26 58.45 58.59 58.69 58.73 58.71 58.66 58.60 59.93 61.26 62.58 63.89 65.18 66.46 67.73 68.97 70.20 71.39 72.57 73.70
Uttarakhand	2.82 2.85 2.87 2.89 2.90 2.92 2.93 2.94 2.95 2.95 2.95 2.95 2.95 3.01 3.08 3.15 3.21 3.28 3.34 3.40 3.47 3.53 3.59 3.65 3.71
West Bengal	25.65 25.86 26.05 26.23 26.38 26.50 26.61 26.69 26.76 26.80 26.82 26.81 26.79 26.76 27.37 27.98 28.58 29.18 29.77 30.35 30.93 31.50 32.06 32.60 33.14 33.66
A & N Islands	0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11
Chandigarh	0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
D & N Haveli, D & D	0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Delhi	4.73 4.77 4.80 4.84 4.86 4.89 4.91 4.92 4.93 4.94 4.94 4.94 4.94 4.93 5.05 5.16 5.27 5.38 5.49 5.60 5.70 5.81 5.91 6.01 6.11 6.20
Ladakh	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Lakshadweep	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Puducherry	0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45

Note: J & K: Jammu and Kashmir, A & N Islands: Andaman and Nicobar Islands, D & N Haveli, D & D: Dadra and Nagar Haveli, and Daman and Diu.