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Introduction 

As of the 2011 census, India's population 

stood at 1.21 billion, representing a growth 

rate of 17 Percent over the past decade. 

Notably, due to substantial demographic 

shifts, India has surpassed China as the 

second most populous country in the world. 

India holds a unique distinction with its 

favorable demographic dividend, which can 

serve as a catalyst to boost economic 

development. Policymakers can examine 

demographic aspects of mortality and 

fertility to expedite economic progress. 

Mortality stands out as a critical 

demographic variable, and its study, 

characteristics, and forecasting provide 

insights into population dynamics and 

trends (Diaz et al., 2018). Mortality data 

serve as valuable indicators of a population's 

health, revealing trends in the age pattern of 

deaths, cause-specific mortality over time, 

and offering a snapshot of population 

                                                 
*Corresponding author  
1 Department of Statistics, Ravenshaw University, Cuttack, Odisha, India-753003 
2 2Department of Statistics, Utkal University, Vanivihar, Odisha, India-751004.Email id: rafulla86@gmail.com 
3 Department of Statistics, Ravenshaw University, Cuttack, Odisha, India-753003 
4 Department of Statistics, Ravenshaw University, Cuttack, Odisha, India-753003 

growth and current health concerns. The 

age-specific mortality pattern plays an 

essential role in shaping public health 

policies by helping to prioritize 

interventions. According to SRS-based 

abridged life tables, India's age-specific 

mortality rates (ASMRs) have shown a 

decline from 1970-75 to 2014-18. During the 

period 2014-18, the life expectancy at birth 

was 68.2 years for males and 70.7 years for 

females. 

Several authors have highlighted changes in 

life expectancy and sex differentials in 

mortality (Singh & Ladusingh, 2016; 

Subramanian et al., 2006). However, 

literature on the determinants of age-specific 

mortality and its forecasting in India remains 

limited. Phenomena such as population 

growth and mortality reduction are of great 

interest due to their significant economic and 

social implications on a country's 

development. Therefore, it is imperative to 
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establish a reliable forecasted mortality rate 

to inform planning and guide demographers 

and policymakers in shaping policies for the 

betterment of the human population. This 

paper aims to examine age patterns of 

mortality in India for both genders and 

evaluate the performance and adequacy of 

different stochastic mortality models used in 

the past to select the most suitable model for 

forecasting mortality rates. A substantial 

body of literature has focused on mortality 

forecasting. Lee and Carter (LC) made a 

significant breakthrough in 1992 when they 

developed the first stochastic mortality 

model based on singular value 

decomposition and time series analysis. 

Since then, numerous extensions to this 

model have been proposed. The first 

extension, utilizing the two-stage approach 

and least square estimation, was put forth by 

Wilmoth (1993) and Lee (2000). 

Brouhns et al. (2002) introduced an 

improved fitting method based on 

maximum likelihood estimation, offering an 

alternative approach to incorporate the LC 

model into a Poisson regression framework. 

Further extensions to the LC model were 

presented by Renshaw & Haberman (RH) 

(2003), which included additional terms in 

the age-period function. The most widely 

recognized cohort-based extension of the LC 

model Is RH model introduced in 2006. To 

address numerical instability in this method, 

Haberman and Renshaw (2011) assumed 

age-independence of the cohort effect to 

simplify the model. Subsequently, models 

featuring multiple bilinear age-period 

components were developed by Hyndman 

and Ullah (2007) and Hatzopoulos and 

Haberman (2009), using generalized linear 

models. Wang et al. (2009) employed 

principal components analysis. However, 

some of the extensions of LC models are less 

popular due to the complex behavior 

exhibited by higher-order period functions, 

making forecasting challenging. 

One of the most popular variants of the LC 

model was introduced by Cairns et al. (2006), 

known as the Cairns-Blake-Dowd (CBD) 

model. This model leverages the linearity of 

the logit of one-year death probabilities for 

older ages. Cairns et al. (2009) expanded the 

original CBD model by incorporating a 

combination of a quadratic age term and a 

cohort effect term. Plat (2009) combined 

features of the LC model and CBD model to 

create an advanced model suitable for all age 

groups, capturing the cohort effect. 

Conversely, the extension of the Plat model 

by O’Hare and Li (2012) and Borger et al. 

(2013) proposed another mortality model 

suitable for lower age groups. It is worth 

noting that the LC model has not been 

applied to Indian mortality data, possibly 

due to the relatively short history of 

reasonably reliable age-specific mortality 

figures. The primary contribution of this 

work lies in implementing various stochastic 

models in the Indian context. 

The remainder of this paper is organized as 

follows: Section 2 explores various stochastic 

mortality models and data sources for this 

study. Section 3 focuses on fitting these 

models to mortality incidence rates and, 

using the best-fit model, forecasting ASMRs 

for India. The final section contains a 

discussion and the conclusion of the study.  

Data sources 

Data for this study were retrieved from the 

Sample Registration System (SRS) from 2000 

to 2017. SRS is the only source that provides 

ASMRs for both genders as well as location 

of residence (rural and urban) for all major 

Indian states. The SRS uses a dual sampling 
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system to collect data on deaths in India. The 

data is collected from a sample of villages 

and urban blocks, and all deaths that occur 

in the selected areas are enumerated. This 

ensures a fairly accurate representation of 

the country's demographics. The ASMR is 

the building-block data for the SRS. It is 

calculated as the number of deaths in a 

particular age group divided by the 

population in that age group. The ASMR is 

reported for five-year age groups, from 0-4 

to 85+. The SRS sampling frame is revised in 

every ten years based on the latest census 

results. The revision process considers 

modifications in the sampling design, wider 

representation of the population, 

overcoming the limitations in the existing 

scheme, and meeting additional 

requirements. The last replacement of the 

SRS sample was carried out in 2014. 

We have taken the age specific death rate (

xtD ) and the central exposure ( c

xtE ) for India 

by gender. For the analytical purpose age 

data have been taken in five-year interval 

from 0-4 to85+ and we denote these age 

groups as 1, 2, 3…,18 respectively.  

Methods Used 

We have used various stochastic models viz., 

LC model, RH model, APC model, CBD 

model, and PLAT model. All these models 

are implemented using the StMoMo package 

in R software. A detail review on these 

stochastic models is given below; 

Lee-Carter (LC) model 

Lee and Carter were the first to use stochastic 

modeling to estimate life expectancy and 

age-specific mortality in 1992. The LC model 

is given as; 

xttxx k

xt em  ++=         (1) 

( ) xttxxxt km  ++=ln    (2) 

Where; xtm be the central mortality rate with 

age group x, and the calendar year t. x  

represent the average shape of age profile 

which is independent of time effects and  x

represent the pattern of deviations from this 

age profile when the parameter tk  varies 

according to time and xt are random error 

which are assumed to be independent and 

normally distributed with mean 0 and 

variance 
2  i.e., ),0(~ 2 xt

.  

LC model is a combination of two step 

inference procedures. In the first step, we 

estimate the parameters by Singular Value 

Decomposition (SVD) method because this 

model cannot be fitted by simple regression 

methods, due to absence of regressor term 

(Lee and Carter 1992). For identifiability 

problem of this model Lee-Carter (1992) 

suggested two constraints which is used to 

stabilize the model i.e., =
x x 1  and 

 =
t tk 0 . Under these assumptions x

simply considered as the average values 

over time of ( )xtmln . The second step 

consists of re-estimation of parameter tk

using time-series process.  

Poisson Lee-Carter model 
Brouhns et al. (2002) proposed an alternate 

technique for fitting the LC model by 

assuming a Poisson error term setting for the 

number of deaths w.r.t. the force of 

mortality. When examining older ages, the 

advantages of this approach become evident 

since the logarithm of observed force of 

mortality at later ages is considerably more 

variable. Because the absolute number of 

fatalities at later ages is lower, the Gaussian 

assumption (as used in the original LC 

model) is impractical (Brouhns et al 2002). 

The LC model re-expressed as: 
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( )xt

c

xtxt mED Poisson ~  

Thus, the predictor structure with non-

parametric age period term (N=1) and no 

cohort effect can be defined as: 

( ) xttxxxt km  ++= )1()1(ln  (3) 

We can estimate the parameters by using a 

maximum likelihood approach. 

Renshaw and Harberman (RH) model 

In the case of the LC model, the model 

performs poorly for some nations where a 

cohort effect has been detected in prior 

historical data. To overcome this problem 

Renshaw and Harberman (2006) introduce a 

cohort effect xt− to capture effects that could 

be attributed to the year of birth c=t-x in the 

LC model as follows; 

( ) xtxtxxxt km −++=  )0()1()1(ln  (4) 

The estimation of the parameters of RH 

model can be done by assuming a Poisson 

distribution of death counts. Renshaw and 

Harberman (2006) postulated that cohort 

effect xt−  is modeled as an Auto Regressive 

Integrated Moving Average (ARIMA) (1,1,0) 

process that is independent of 𝑘𝑡
(1)

. For 

identifiability problem to ensure the model 

RH (2006) suggested the following 

parameter constraints  =
x x 1)1( , 

 =
t tk 0)1(

,  =
x x 1)0(  and

−

−=
=

1

1

0
xt

xtc c

n

k

  

 The RH model outperforms the previous 

mentioned model owing to the inclusion of a 

cohort impact for nations, but it lacks 

robustness due to the occurrence of several 

local maxima in the likelihood function. 

Currie (2006) fitted this model to UK 

population and observed that the 

parameters showed some qualitative 

differences and also the model incorporates 

the cohort effects. 

Due to numerical instability of the above 

model Renshaw and Harberman again in 

2011 propose another model by assuming 

the age independence of the cohort effect 

( )1)0( =x  to above given model. This is 

another simple and popular mortality 

forecasting model. The modified RH model 

is as follows; 

( ) xttxxxt km −++=  )1()1(ln
          (5) 

Currie Age Period Cohort (APC) model 

Currie (2006) proposed a simplified RH 

(2006) model known as age period cohort 

(APC) model, where the age, period and 

cohort effects influence mortality rates 

independently that is 1)1( =x  and 1)0( =x . 

This model removed the robustness 

problem. The APC modeled as follows: 

( ) xttxxt km −++=  )1(ln
 

(6) 

Cairns-Blake-Dowd (CBD) model 

Cairns et al. (2006) introduced a two-factor 

mortality model with two age period term 

(N=2) and no static function (𝛼𝑥) with no 

cohort effect 𝛾𝑡−𝑥. The CBD model follow a 

binomial distribution w.r.t. the one-year 

death probability (qxt) is defined as:  

( ) )2()1( )(ln ttxt kxxkq −+=
 

(7) 

Where the pre-specified age modulating 

parameters are 1)1( =x  and xxx −=)2( .  

In order to project mortality, the time 

indexes 𝑘𝑡
(1)

 and 𝑘𝑡
(2)

 can be forecasted using 

ARIMA model with bivariate random walk 

with drift. This model does not have 

identifiability problem and no parameter 
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constraints are present in CBD model. There 

are three extensions of this model by 

addition of cohort effect and quadratic age 

effect in this model. The demerits of CBD 

models are that they ignored the lower age 

groups. These models designed for higher 

age groups. When these models fitted to all 

range groups the fit quality is relatively poor 

and the predictions are biologically 

unreasonable. 

Plat model 

Plat (2009) proposes a model that attempts to 

incorporate the best elements of previous 

models while excluding the models' 

drawbacks. Plat (2009) introduced a four-

factor model, there are three age period term 

(N=3) and having cohort effect which is a 

combination of LC model and CBD model. 

This model is suitable for all ages. The PLAT 

model is defined as: 

( ) xttttxxt kxxkxxkm −

+ +−+−++=  )3()2()1( )()(ln       (8) 

Where; 

𝛽𝑥
(1)

= 1, 𝛽𝑥
(2)

= 𝑥̅ − 𝑥, 𝛽𝑥
(3)

= (𝑥̅ −

𝑥)+ = max(0, 𝑥̅ − 𝑥)and the cohort 

effect with pre-specified age 

modulating parameters 𝛽𝑥
(0)

= 1.  

 

Plat (2009) assumes a Poisson distribution of 

death count. In order to project mortality, the 

time indexes 𝑘𝑡
(1)

, 𝑘𝑡
(2)

 , 𝑘𝑡
(3)

 and the cohort 

effect 𝛾𝑡−𝑥 can be modeled and forecast using 

suitable ARIMA processes.  

Generalized Age-Period-Cohort (GAPC) 

stochastic mortality structure 

Several stochastic mortality models have 

been created in recent years. Many stochastic 

mortality models, according to Currie (2016), 

may be described in terms of either a 

generalized linear model (GLM) or a 

generalized non-linear model (GNM), both 

of which belong to the family of generalized 

age-period-cohort (GAPC) stochastic 

mortality models. The GAPC stochastic 

mortality models provide a unique 

framework that may be used to anticipate 

mortality in a variety of ways (Villegas et al. 

2017). In GAPC framework force of mortality 

𝜇𝑥𝑡 is constant over each age and year. So 

that force of mortality 𝜇𝑥𝑡 and central death 

rate 𝑚𝑥𝑡will coincide. It can assume that 

number of deaths 𝑑𝑥𝑡 with either as central 

exposure  𝐸𝑥𝑡
𝑐  or as initial exposure 𝐸𝑥𝑡

0  with 

ages 𝑥𝑖  (𝑖 = 1,2, . . . , 𝑘) and years 𝑡𝑗 (𝑗 =

1,2, . . . , 𝑛). The GAPC stochastic mortality 

model produces the four parts of 

specifications (Mc Cullagh and Neder1989). 

The model considers random variable 𝐷𝑥𝑡 be 

the number of death count which either 

Poisson or binomially distributed, 

depending upon the type of exposure. Let us 

assume 𝐷𝑥𝑡be an independent random 

variable then; 

𝐷𝑥𝑡~ Poisson (𝐸𝑥𝑡 
𝑐 𝑚𝑥𝑡), (x= 1, 2, 3……X, t= 1, 

2, 3……. T)                          (9) 

𝐷𝑥𝑡~ Binomial (𝐸𝑥𝑡
0 ,𝑞𝑥𝑡), (x=1, 2, 3…….X, t= 1, 

2, 3……T)                        (10) 

The model should be preferred for a good 

choice of link function. Hunt and Blake 

(2014) proposed the log link function with 

central exposure in Poisson distribution, and 

logit link function for initial exposure or 

binomial distribution. Thus the g function is 

defined as; 

xt

xt

xt

E

D
Eg =


















           
 (11) 

According to Haberman and Renshaw 

(2011), all models should be fitted using the 

same distributional assumptions for 

comparison of model validity. Therefore, we 

assume log link function with central 

exposure in Poisson distribution of deaths 
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for all models considered here. The predictor 

structure ηxt is included as the systematic 

component of the model which consists of a 

series of factors dependent on age(x) 0-5 to 

85+, period(t)2000 to 2017 and year of birth 

(or cohort) c=t-x for the population of India 

a. Hunt and Blake (2014) derive the predictor 

ηxt as; 


=

−++=
N

i

xtx

i

t

i

xkxt k
1

)0()()( 
                 

(12) 

Where; 

αx representing age-increasing 

pattern of mortality of India for both 

genders, and kt
(i)

 indicate the time trend 

which will be used to forecast future 

mortality using ARIMA model. βx
(i)

 , i=1, 2..., 

N describing how the particular mortality 

effects are distributed over ages which are 

multiplied by period functions, kt
(i)

. The 

term γt−x accounts for the cohort effect with 

βx
(0)

 modulating its effect across ages. To 

identify the stochastic mortality, model the 

following set of parametric constraints are 

required: 

( )xtx

N

tt

N

xxx kk −=  ,,,...,,,...,, )0()()1()()1(

     (13) 

MLES for considered Stochastic Mortality 
Models 
Parameter estimation in GAPC stochastic 

mortality models may be accomplished by 

maximizing the likelihood function. Log link 

may be used to write the probability function 

for a Poisson distribution of death counts as 

follows: 

( )   −−=
x t

xtxt dw !d̂logd̂d̂logd̂,d xtxtxtxtxt
          (14) 

Where;   

𝑑̂𝑥𝑡 = 𝐸𝑥𝑡𝑔−1 (𝛼𝑥 + 𝛽𝑥
(𝑖)

𝑘𝑡
(𝑖)

+

𝛽𝑥
(0)

𝛾𝑡−𝑥) be the expected number of 

deaths 

𝑔−1 = Predictive model i.e., inverse of 

the link function 𝑔 

𝜔𝑥𝑡= weight matrix containing element {0,1}.  

Goodness of fit  
The residuals of the fitted model are plotted 

to determine the degree of fit of mortality 

models. The scale deviance residuals are 

defined as; 

( ) ( )
̂

,
d̂xt

txdev
dsignr xtxt −=                (15) 

 
Where; 

 ( )
vk

ddD xtxt

−

−
=

ˆ
̂  

For Poisson random component; 

( ) ( )











−−














= xtxt

xt

xt
xt dd

d

d
dtxdev ˆ

ˆ
log2,

   (16) 

The total deviance if the model is 

𝐷(𝑑𝑥𝑡 , 𝑑̂𝑥𝑡) = ∑ ∑ 𝜔𝑥𝑡𝑑𝑒𝑣(𝑥, 𝑡)𝑡𝑥  and 𝐾 =

∑ ∑ 𝜔𝑥𝑡𝑡𝑥  is the number of observations in 

the data and v is the effective number of 

parameters in the model. 

 

In this study, we use scatter plots of residuals 

(Haberman and Renshaw, 2011) and heat-

maps of residuals to assess the degree of fit 

for various models. For all of the models 

evaluated in this work, the best fit model was 

determined by comparing two essential 

criteria known as Akaike Information 

Criteria (AIC) and Bayesian Information 

Criteria (BIC). 

𝐴𝐼𝐶 = 2𝑣 − 2ℓ   and  𝐵𝐼𝐶 = 𝑣 𝑙𝑜𝑔 𝑘 − 2ℓ    (17) 

Generally, a model with minimum value of 

AIC and BIC is considered as the best fit 

model. 

Forecasting 

In the GAPC family in order to project 

mortality rates generally the time 

index( 𝑘𝑡
(𝑖)

) and cohort index (𝛾𝑡−𝑥) are 
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forecasted by the help of time series methods 

which comprises of two methods. First, we 

assume that the period index follows a 

multivariate random walk with drift. 

 
k

ttt kk  ++= −1            (18) 

Where 𝑘𝑡 = (𝑘𝑡
(1)

… 𝑘𝑡
(𝑁)

)
𝑇

 , 𝜉𝑡
𝑘~𝒩(0, ∑) , 𝛿 is 

an N-dimentional vector of drift parameters 
and ∑ is the Ν × Ν variance-covariance 

matrix of the multivariate white noise 𝜉𝑡
𝑘 . 

 
The second alternative is to assume that the 

individual period indexes, 𝑘𝑡
(𝑖)

 , i= 1…..., N 
follow a general univariate ARIMA model. 
Under this approach, the i-th period index, 

𝑘𝑡
(𝑖)

, is assumed to be follow an ARIMA 
(𝑝𝑖, 𝑞𝑖, 𝑑𝑖) with drift; 
 

                                                                        (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where ∆ is the difference operator, 𝛿0
(𝑖)

 is the 

drift parameter, 𝜙1
(𝑖)

,……, 𝜙𝑝𝑖

(𝑖)
 are the 

autoregressive coefficients with 𝜙𝑝𝑖

(𝑖)
≠

0,𝛿1
(𝑖)

,……., 𝛿𝑞𝑖

(𝑖)
 are the moving average 

coefficients with 𝛿𝑞𝑖

(𝑖)
≠ 0 and 𝜉𝑡

(𝑖)
 is a 

Gaussian white noise process with variance 

𝜎𝜉
(𝑖)

. Similarly, for cohort index, 𝛾𝑡−𝑥 follow a 

univariate ARIMA process which is 

independent of period index, 𝑘𝑡 (Renshaw 

and Haberman 2006; Carins et al. 2011; 

Lovasz 2011). In general, assume that 𝛾𝑐 ≡

𝛾𝑡−𝑥 follow an ARIMA (p, d, q) with drift, so 

that; 

                                                                (20) 

 

Where 𝜖𝑐 is a Gaussian white noise process 

with variance 𝜎𝜖. 
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Table 1 List of models and constraints 
 

Models Notations Formula Constraints 

LC (1992) M1 𝜂𝑥𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝑘𝑡
(1)

 ∑ 𝛽𝑥𝑥 = 1, ∑ 𝑘𝑡𝑡 = 0 

RH (2006) 

M2 

𝜂𝑥𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝑘𝑡
(1)

+ 𝛽𝑥
(0)

𝛾𝑡−𝑥 

∑ 𝛽𝑥
(1)

= 1𝑥  ,∑ 𝑘𝑡
(1)

𝑡 = 0 

,∑ 𝛽𝑥
(0)

= 1𝑥  , 

∑ 𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0 

Extension of RH (2011) M3 𝜂𝑥𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝑘𝑡
(1)

+ 𝛾𝑡−𝑥 ∑ 𝛽𝑥
(0)

= 1𝑥   

APC (2006) 

M4 

𝜂𝑥𝑡 = 𝛼𝑥 + 𝑘𝑡
(1)

+ 𝛾𝑡−𝑥 

∑ 𝑘𝑡
(1)

𝑡 = 0  , 

∑ 𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0, 

∑ 𝑐𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0 

CBD (2006) M5 𝜂𝑥𝑡 = 𝑘𝑡
(1)

+ (𝑥 − 𝑥̅)𝑘𝑡
(2)

 No constraint 

PLAT (2009) 

M6 

𝜂𝑥𝑡 = 𝛼𝑥 + 𝑘𝑡
(1)

+ (𝑥 − 𝑥̅)𝑘𝑡
(2)

+ 𝛾𝑡−𝑥 

∑ 𝑘𝑡
(𝑖)

𝑡 = 0, 

∑ 𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0, 

∑ 𝑐𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0, 

∑ 𝑐2𝛾𝑐
𝑡𝑛−𝑥1
𝑐=𝑡1−𝑥𝑘

= 0 
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Analysis and Results 

To exhibit the improvement mortality in 

India we have plotted age specific mortality 

rates with time (Figure 1). For the period 

2000-2017, Figure 1 depicts the central 

mortality rates by age group in India. This 

graph depicts a strong upward trend in 

death rates by age group over time. In India, 

it is noticed that younger age groups have a 

low mortality rate, with the exception of the 

age group 0-4 which has a high death rate. In 

India the infant and child mortality are high 

due to several reasons like malnutrition, 

illiteracy, hygienic and sanitation etc.  In the 

upper age groups, such as 70-75, 75-80,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80-85, and 85+, a rising tendency may be 

noticed in above graphs. It is observed that 

there is decline in death cases of infant and 

children in current years due to 

improvements in medical facilities, various 

health policies implemented by the 

Government. 

Over the period 2000-2017, we displayed the 

log (𝑚𝑥𝑡) value on the y-axis against the age 

group on the x-axis in Figure 2. It clearly 

shows that at lower age group its quite high 

rather than adult age group. In India's male 

and female instances, it also exhibits an 

upward tendency in terms of age groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 
 

Figure 1 Three-dimensional trend plot of age specific mortality rate of India for the age group 0-4 to 
85+ during the year 2000 to 2017. 

 
 

Figure 2 Log death rate for total, male and female w.r.t. different age groups for the year 2000 to 2017 
in India. 

Total death rates of India (2000-17) Male death rates of India (2000-17) Female death rates of India (2000-17) 
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Parameter estimation 

The different notations viz. static age 

function 𝛼𝑥, age modulating function 𝛽𝑥
(𝑖)

, 

period function 𝑘𝑡
(𝑖)

and cohort age function 

𝛾𝑡−𝑥 are the parameters of all the above 

considered stochastic mortality models that 

can be obtained by maximizing the model 

log-likelihood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure-3, the estimator 𝛼𝑥shows almost 
linear upward trend in RH model for India. 

In case of India the estimates for 𝑘𝑡
(1)

 show a 
decreasing trend for overall and male cases, 
but in case of females of India it is in 
increasing pattern. This indicates that in 
overall general mortality improvement over 
the period in India. More precisely, cohort 
estimates of RH model shows decreasing 
trend over the period. 
 

 

 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3 Parameter plot for RH model fitted to the India for total, male and female 
population for different age groups for the period 2000 to 2017. 

Parameter plot India Both sexes (RH Model) 

 

Parameter plot India Males RH 

 

Parameter plot India Females RH 
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Goodness of fit 

The goodness of fit of these models can be 

measured by the scaled residual deviance 

between the observed and fitted data, which 

depends on the chosen distributional 

assumptions. In Figure 4 we can see that each 

line represents the one-year interval. The top 

row of data represents information about 

newborns. Each column corresponds to a 

specific year, while each row represents an 

age group. In this analysis, we have 

considered 18 distinct age groups, ranging 

from 0-4 to 85+, spanning the 18-year period 

from 2000 to 2017. The colour of each cell is 

indicative of its deviance residual.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assess the model, we have grouped these 

residuals by age and year. In an ideal model, 

we would expect to see a completely random 

distribution of colours with no discernible 

patterns or correlations. 

Upon examining the image below, we can 

observe that, in the case of the RH model, 

there are no discernible regularities in the 

colour distribution by year in any instances 

for India. Similar patterns emerge in the LC, 

APC, and PLAT models. However, when 

considering the CBD model, the deviance 

residuals do not present a completely 

random pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Heat-maps of deviance residuals for RH model, fitted to the India population for different age groups 

for the period 2000 to 2017 

Heat Map Plot for RH Model Total India Heat Map Plot for RH Model Male 
India 

Heat Map Plot for RH Model Female  
India 

   

Figure 5 Scatter plot of deviance residuals of RH model fitted to the Indian total, male and female population 

for different age groups for the period 2000 to 2017 

Scatter Plot India Total RH Scatter Plot India Male RH Scatter Plot India Female RH 
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Trends can be identified in specific cases, 

with certain age groups (0-4, 5-9, and 10-14) 

appearing predominantly white, blue, or 

red. This implies that the model's 

explanatory power for child mortality is 

relatively weaker compared to adult 

mortality. Several factors could contribute to 

this, such as malnutrition, illiteracy, 

inadequate hygiene, and sanitation 

practices. 

Figure 5 shows the scatter plot of deviance 

residuals for all fitted model to India for 

total, male and female population for 0-5 to 

85+ age group and the period 2000-2017. We 

see that each model has age effect, period 

effect and cohort. Indeed, if the residuals of 

a model do not exhibit a systematic pattern 

and instead demonstrate a random 

distribution, it is considered an ideal or 

good-fit model.  

In the above figure we can see that RH model 

contains no pattern of residuals and can be 

considered as good fit models for all cases. 

 

 

 

 

 

 

 

 

 

 

 

Similar pattern is observed in LC, APC and 

PLAT models but in case of the model CBD 

we unable to capture age effect and cohort 

effect and also it has observed curvature of 

mortality rate in log scale in all cases of India. 

Information criteria 

Tables 2 and 3 present maximum likelihood 

estimates along with the corresponding AIC 

and BIC values for the five selected models 

fitted for India total, male and female 

population. It is noted that both criteria lead 

to the same ranking for RH, LC, PLAT and 

APC being the best performing models but 

CBD model hold the worst criteria ranking 

for the data in all cases. Overall, RH model 

has been identified as best fit model with 

lower AIC and BIC value among all 

considered model in all cases. 

Forecasting  

From the above criteria RH, LC, PLAT and 

APC are the better fit models. But RH model 

identified as best fit, so we give special 

emphasis on forecasting this model with 

result mentions in above table 1,2.  

 

 

 

 

 

 

 

 

 

Table 2 Model Summary of Indian Total population 

 Model 
Total 

Log-likelihood AIC BIC 

LC(M1) -218474485 436949074 436949271 
RH (M3) -167990595 335981363 335981688 
APC(M4) -269735244 539470626 539470883 
CBD(M5) -59559643284 119119286641 119119286777 
PLAT(M9) -245758522 491517213 491517531 

 

Table 3 Model Summary of Male and Female population of India 

Model 

Male Female 

Log-
likelihood 

AIC BIC Log-
likelihood 

AIC BIC 

LC(M1) -185427352 370854809 370855006 -152289873 304579851 304580048 

RH (M3) -137388098 274776369 274776694 -112595112 225190397 225190722 

APC(M4) -208719333 417438802 417439059 -180475774 360951685 360951942 

CBD(M5) -29363598779 58727197631 58727197767 -32995255921 65990511914 65990512050 

PLAT(M9) -187266717 374533603 374533921 -167622043 335244255 335244573 
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Table 4 shows ARIMA for the RH model to 

forecast period and cohort effect applied to 

India male and female population for all the 

age group and for the period 2018 to 

2025.Here Table 5, shows the forecasted age 

specific mortality rate of total population of 

India using best fitted RH model for the 

years 2018 to 2025. In this table we can see 

the age specific mortality rate for different 

years continuously decreases with respect to 

the calendar years. Comparatively a high 

mortality rate observed at an early age group 

(0-4). 

We can observe low mortality rate in 

subsequent ages up to 50-54 age group. The 

population has lowest mortality rate in the 

age group 10-15 and highest mortality rate in 

the age group 85+ throughout all the years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Almost a constant mortality rate observed 
among the children (5-9) and adolescent 
population (10-19) throughout the forecasted 
years. The forecasted value shows a speed 
decline in mortality rates among older 
population with the age group 60-64 to 75-
79. These rapid decline in mortality among 
older persons may be due to the medical 
advancement and improved health care 
provided to the older persons. Surprisingly, 
the mortality rate for the population in the 
age group 80-85 and 85+ increases with 
almost more than 100 and 200 respectively.  

A similar pattern of mortality rate may be 

expected in future days for both male and 

female populations as shown in table 6. 

Overall, we can observe from the table above 

that there is a declining tendency of age-

specific mortality from 2018 to 2025.  

                                                                                           
 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

Table 4 Selected ARIMA (p, d, q) for the model RH with period index and cohort index 

Model 𝑲𝒕
(𝟏)

 𝜸𝒕−𝒙 

RH ARIMA (0, 1, 0) with drift ARIMA (1, 1, 0) with drift 

 

Table 5 Forecasted value of age specific mortality rate in India using RH model 

Age groups 2018 2019 2020 2021 2022 2023 2024 2025 

0-4 8.4 8.1 7.8 7.5 7.2 6.9 6.7 6.4 
5-9 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 
10-14 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 
15-19 0.9 0.8 0.7 0.7 0.6 0.6 0.6 0.6 
20-24 1.2 1.1 1 0.9 0.9 0.8 0.8 0.8 
25-29 1.3 1.3 1.2 1.1 1 0.9 0.9 0.8 
30-34 1.7 1.6 1.6 1.5 1.3 1.2 1.2 1.1 
35-39 2.2 2.1 2.1 2.1 1.9 1.7 1.6 1.5 
40-44 3.1 2.9 2.8 2.7 2.8 2.6 2.3 2.2 
45-49 4.6 4.3 4 3.9 3.7 3.8 3.5 3.1 
50-54 7.6 7.1 6.7 6.2 6.1 5.9 6.1 5.7 
55-59 11.3 11.1 10.3 9.7 8.9 8.7 8.4 8.5 
60-64 18.7 17.3 17.1 15.8 14.8 13.6 13.3 12.7 
65-69 28.5 27.7 25.6 25 23 21.3 19.5 18.9 
70-74 45.7 44.7 43.8 40.6 39.9 37 34.6 31.8 
75-79 68.8 67.9 66.6 65.3 60.7 59.7 55.4 51.8 
80-85 111.1 115.6 116.7 117 117.2 111.3 111.9 106.2 
85+ 192.6 196.5 205.9 209.1 210.9 212.8 203.3 205.7 
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Table 6 Forecasted value of age specific mortality rates in India for both males and females using RH models 

Age  
Group 

2018 2019 2020 2021 2022 2023 2024 2025 

M
a

le
 

F
em

a
le

 

M
a

le
 

F
em

a
le

 

M
a

le
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em

a
le
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em
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F
em

a
le

 

M
a

le
 

F
em

a
le

 

M
a

le
 

F
em

a
le

 

M
a

le
 

F
em

a
le

 

0-4 8.4 8.8 8.1 8.5 7.9 8.3 7.7 8 7.4 7.8 7.2 7.6 7 7.3 6.8 7.1 
5-9 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 

10-14 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
15-19 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.5 
20-24 1.3 1 1.2 1 1.1 0.9 1 0.8 1 0.8 1 0.7 0.9 0.7 0.9 0.7 
25-29 1.5 1.1 1.5 1.1 1.4 1 1.2 1 1.2 0.9 1.1 0.8 1.1 0.8 1.1 0.8 
30-34 1.9 1.3 1.9 1.2 1.8 1.2 1.7 1.1 1.6 1 1.5 1 1.4 0.9 1.4 0.9 
35-39 2.7 1.7 2.6 1.6 2.5 1.6 2.5 1.6 2.4 1.5 2.1 1.4 2 1.3 2 1.3 
40-44 3.8 2.6 3.4 2.5 3.3 2.4 3.2 2.3 3.2 2.3 3 2.3 2.7 2.2 2.6 2 
45-49 5.6 3.5 5.3 3.3 4.8 3.2 4.6 3.1 4.5 3 4.5 2.9 4.2 2.9 3.8 2.7 
50-54 8.7 7.8 8.1 7.4 7.6 7.3 6.8 7.1 6.5 7 6.4 6.9 6.3 6.9 5.9 7 
55-59 13.4 9.9 13.2 9.9 12.3 9.3 11.5 9 10.4 8.6 10 8.4 9.7 8.1 9.6 8 
60-64 21 16.4 19 15.6 18.8 15.6 17.3 14.5 16.2 14 14.5 13.4 13.8 12.9 13.4 12.5 
65-69 32.1 25.1 31 24.7 28 23.5 27.4 23.4 25.1 21.7 23.4 20.8 20.9 19.9 19.7 19.1 
70-74 50.8 38.2 48.9 38.1 47.5 37.4 43.1 35.4 42.5 35.1 39.2 32.6 36.7 31.2 33 29.7 
75-79 74.6 58.5 73.9 57.2 71.2 57 69.3 55.9 62.9 53 62.1 52.7 57.4 48.9 53.8 46.8 
80-85 118.2 105.3 121.2 105.9 122.4 104.7 120.2 105.6 119.2 104.9 110.3 100.7 111 101.1 104.5 95 
85+ 210.9 177.2 211.5 175 218.7 175.6 222.6 173.2 220.3 174.2 220.3 172.6 205.6 165.2 208.6 165.5 

 
Figure 6 Forecast plot of the period index and cohort index of the RH model with random walk with drift ( ))1(

tk  and 

ARIMA (0,1,0) with drift ( )xt−  applied to Indian population for the period 2000 to 2017 

Forecasting Plot for India Total 

  
Forecasting Plot for India Male 

  
Forecasting Plot for India Female 
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However, for both genders, there was a 

considerable fluctuation in the 85+ age 

category of population throughout the 

forecasted period for India. It was also 

discovered that the prediction result of male 

age-specific mortality rate is greater than the 

female age-specific death rate India. 

In Figure 6, the solid black line represents 

central forecast and shaded region 

represents 95 percent prediction interval. In 

both cases we can see the decreasing trend of 

mortality rate over the period but in case of 

Indian females it shows an increasing trend, 

which will have a greater emphasis. The 

forecast plot shows mortality conditions of 

Indian male and female population will 

improve in the future years. 

Discussions and Conclusion 

The death rate in India is compared using 

stochastic mortality modeling in GAPC 

framework. We fitted five frequently used 

stochastic mortality models, LC, RH, APC, 

CBD, and PLAT, to the 5-year age interval 

death rate for 18-years (i.e., 2000 to 2017) of 

the India population. To begin, we plotted 

the data to see whether there was a pattern, 

which revealed a decreasing trend 

throughout the year. We also plotted 

logarithmic transformation of age specific 

mortality rate according to. different age 

groups for the year 2000 to 2017 in India for 

both the gender. The parameters of GAPC 

stochastic mortality models were computed 

using the maximum likelihood estimation 

approach. We observed that the general 

pattern of mortality ( )x  for both male and 

female population of India shown high 

infant mortality, an accidental hump around 

ages 20 years and nearly exponential 

increase in old ages. The sensitivity of ( )x  

has shown mortality decline at high rate for 

the age group 25-34 years for female and age 

groups 15-24 years for male population than 

other age groups. Mortality index ( )tk  has 

and cohort index ( )xt−  decreasing trend. To 

study each model's fitting behavior, specific 

criteria were considered. The AIC, BIC, and 

Likelihood values were used to compare the 

models. The RH model was chosen as the 

best fit model for India mortality rates based 

on the selection criteria. In addition, when 

compared to the CBD model, the LC, APC, 

and PLAT models have been found as good 

models. The heat-maps and scattered plot of 

residuals were also examined. Among other 

models, the CBD model does not fit well. As 

a result, we find that the CBD model is ill-

suited to the population of India.  

In this section, we summarize the above 

models fitting and forecasting results of this 

analysis. The result of this findings is 

compared with the corresponding results 

obtain from several papers related to India. 

Our study shows that all models we have 

taken capture effectively the period effects 

and cohort effect for both genders except 

CBD model. Earlier Chavhan & Shinde 

(2016) have compared ten stochastic 

mortality models on India population for the 

age 22-99 years by keeping actuarial 

application in concern. They observed that 

the model given by Plat (2009) on the basis of 

AIC and BIC value is the best model for India 

male and female mortality. 

The effect parameters of model RH, we have 

forecasted the age specific mortality rates for 

India population for the period 2018 to 2025. 

The forecasted value shows a decreasing 

trend over the periods but exception in 

females of India with increasing trend. 
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Overall, we found an improved pattern of 

mortality in India for both sex in the future. 

It is a difficult task for the projection models 

to fit the smaller population data having 

multiple age-period and cohort terms. The 

availability of mortality data with extended 

age range and periods in the future will 

improve the study of stochastic mortality 

models. Further, the application of stochastic 

models for analyzing the mortality rate due 

to different causes is a possible area of future 

research. 

Forecasting mortality data plays a pivotal 

role in informing healthcare policy, 

particularly in the context of India's evolving 

demographic landscape. By using the model 

forecasts, policymakers can better identify 

populations at risk of high mortality, plan for 

future healthcare needs, and evaluate the 

effectiveness of health policies. With the 

country witnessing a gradual shift towards 

an aging population, the accurate projection 

of mortality rates and the understanding of 

age-specific mortality patterns are critical for 

policymakers. By assessing and forecasting 

mortality trends, policymakers can 

strategically allocate resources and develop 

targeted geriatric care programs, planning 

social security and healthcare systems.  
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